

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724

PO Box 678 Croydon Vic 3136

Telephone: 9723 0744 Facsimile: 9723 0799

4th November 2021

Our Reference: 21261:NB1091

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

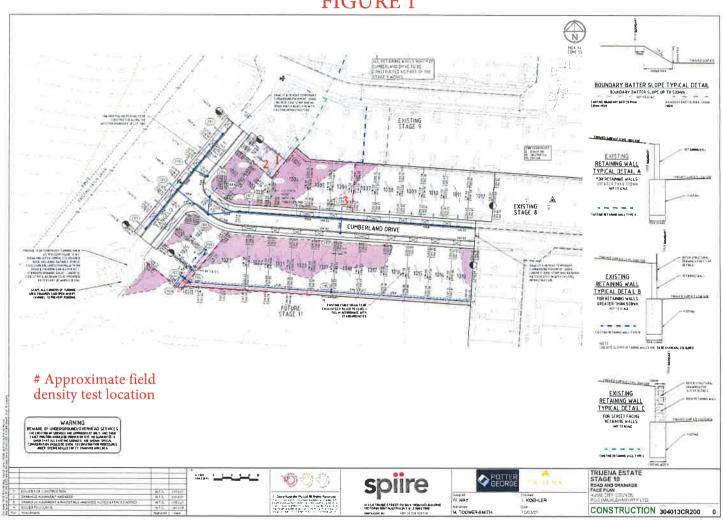
Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING TRIJENA – STAGE 10 (MICKLEHAM)

Please find attached our Report No 21261/R001 which relates to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density testing was performed in July 2021.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).


We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.

Civil Geotechnical Services

Nick Brock

FIGURE 1

Job No 21261 **CIVIL GEOTECHNICAL SERVICES** Report No 21261/R001 6 - 8 Rose Avenue, Croydon 3136 Date Issued 22/09/2021 Client WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD) Tested by AC Project TRIJENA - STAGE 10 Date tested 19/07/21 Location MICKLEHAM Checked by JHF

Feature EARTHWORKS Layer thickness 200 mm Time: 10:32

Test No		1	2	3		-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	(I		
Approximate depth below FSL							
Measurement depth	mm	175	175	175		-	(4)
Field wet density	t/m³	1.82	1.87	1.83	(€)		(#)
Production of the second of th		000					
	%	23.8	22.0	25.5	## S	*	
Test procedure AS 1289.5.7.1 Test No	<u>%</u>	1	22.0	25.5 3 Stan	150		
Test procedure AS 1289.5.7.1 Test No Compactive effort	% mm			3	150		
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve		1	2	3 Stan	- dard	=	
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	mm	19.0	2	3 Stan 19.0	- dard	#\ 	
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	mm wet	1 19.0 0	2 19.0 0	3 Stan 19.0	dard	# (F)	
Field moisture content Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	mm wet t/m³	1 19.0 0	2 19.0 0	3 Stan 19.0	dard	2°	
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	mm wet t/m³	1 19.0 0 1.91	2 19.0 0 1.91	3 Stan 19.0 0 1.89	dard	# # # # # # # # # # # # # # # # # # #	

Material description

No 1 - 3 Clay Fill

AVRLOT HILF V1.10 MAR 13

NATA Accredited Laboratory No 9909
Accredited for compliance with
ISO/IEC 17025 - Testing

CIVIL GEOTECHNICAL SERVICES

Job No

21498

6 - 8 Rose Avenue, Croydon, Vic 3136

Report No Date Issued 21498/R001

WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)

Tested by

23/09/2021

Project

TRIJENA - STAGE 10

Date tested 14/07/21

Location

MICKLEHAM

Checked by

JHF

AC

Feature

CAPPING

Layer thickness

150 mm

Time:

10:10:36

est No	1	1	2	3	4	5
ocation		Cu	mberland Dr	ive	Tangel	o Street
	Chainage	120	170	220	50	100
	Offset	1.8	1.8	1.8	1.8	1.8
	1	north	south	north	east	west
		of kerb	of kerb	of kerb	of kerb	of kerb
pproximate depth from F.S.L.	m					
leasurement depth	mm	125	125	125	125	125
ield wet density	t/m³	2.25	2.24	2.23	2.22	2.23
ield dry density	t/m³	2.10	2.09	2.05	2.06	2.05
ield moisture content	%	7.0	7.0	8.5	8.0	8.5
Material source and location Compactive effort Maximum Dry Density	t/m ³		40111		DARD	DIOOK
Maximum Dry Density	t/m³			2.0		
ptimum Moisture Content	%			9.	.5	
est procedure AS 1289.5.4.1						
Oversize rock retained on sieve	mm	37.5	37.5	37.5	37.5	37.5
Percent of oversize material	wet	×		•	+:	*
Percent of oversize material	dry	- 			*	
djusted Maximum Dry Density	t/m³		127	1,50	=:	
djusted Optimum Moisture Cont	ent %		- 2	123	=	2
Moisture Variation From	n	2.0%	2.5%	0.5%	1.5%	0.5%
Optimum Moisture Cont	ent	dry	dry	dry	dry	dry
loisture Ratio (R _m)	%	77.0	76.0	93.0	84.0	93.0
anaity Patio (P.)	%	100.5	100.0	98.5	99.0	98.5
Density Ratio (R _D)	/0	100.3	100.0	30.3	99.0	30.5

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

ASSTASSIGNED V1.13 MAR 13

CIVIL GEOTECHNICAL SERVICES

Job No

21498

6 - 8 Rose Avenue, Croydon, Vic 3136

Report No Date Issued 21498/R002 04/04/2021

Client Project WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)

Tested by

АÇ

TRIJENA - STAGE 10

Date tested

04/08/21

Location

MICKLEHAM

Checked by

JHF

Feature

CLASS 3

Layer thickness

100 mm

Time:

08:31:09

Test No		6	7	8	9	10
Location		Cu	mberland Dr	ive	Tangel	o Street
	Chainage	120	170	220	50	100
	Offset	1.8	1.8	1.8	1.8	1.8
		south	north	south	west	east
		of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	m					
Measurement depth	mm	75	75	75	75	75
Field wet density	t/m³	2.39	2.41	2.38	2.39	2.40
Field dry density	t/m³	2.28	2.29	2.26	2.27	2.27
Field moisture content	%	5.0	5.5	5.0	5.0	6.0
			20mi		/IVQ, Donnyl IFIED	brook
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289 5 4 1	t/m³ %		20mi		IFIED 30	brook
Compactive effort Maximum Dry Density		19.0	20mi	MOD 2.:	IFIED 30	brook
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	%	19.0		MOD 2.: 7.	IFIED 30 0	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	%	19.0		MOD 2.: 7.	19.0	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	mm wet	ŝ		MOD 2.: 7.	19.0	19.0
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	mm wet dry t/m³	<u> </u>	19.0	19.0	19.0	19.0
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	mm wet dry t/m³		19.0	19.0	19.0 19.0	19.0
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	mm wet dry t/m³ nt %	2.0%	19.0	19.0 	19.0 	19.0
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	mm wet dry t/m³ nt %		19.0	19.0	19.0 19.0	19.0
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	mm wet dry t/m³ nt %	2.0%	19.0	19.0 	19.0 	19.0

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

CIVIL GEOTECHNICAL SERVICES

Job No Report No 21498

6 - 8 Rose Avenue, Croydon, Vic 3136

Date Issued

21498/R003 12/08/2021

Project

WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)

Tested by Date tested

AC 12/08/21

Location

TRIJENA - STAGE 10 MICKLEHAM

Checked by JHF

Feature

CLASS 2*

Layer thickness

130 mm

Time:

13:46:18

Test No		11	12	13	14	15	
Location		Cu	imberland Di	rive	Tangel	o Street	
	Chainage	120	170	220	50	100	
	Offset	1.8	1.8	1.8	1.8	1.8	
		south	north	south	west	east	
		of kerb	of kerb	of kerb	of kerb	of kerb	
Approximate depth from F.S.L.	m						
Measurement depth	mm	100	100	100	100	100	
Field wet density	t/m³	2.32	2.32	2.34	2.36	2.34	
Field dry density	t/m³	2.23	2.22	2.20	2.25	2.26	
Field moisture content	%	4.5	5.0	6.0	5.0	3.5	
Date of assignment Material source and location Compactive effort		2 Assigned \		27/05 m Class 2 - MOD	/2021 /IVQ, Donnyl IFIED	brook	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content	5.2.1 & 5.4.2 t/m³ %	? Assigned \		27/05 m Class 2 - N	/2021 MVQ, Donnyl IFIED 32	brook	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	t/m³ %		20m	27/05 m Class 2 - N MOD 2.:	/2021 //VQ, Donnyl IFIED 32 5		
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	t/m³ %	19.0		27/05 m Class 2 - N MOD 2.: 7	/2021 //VQ, Donnyl IFIED 32 5	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	t/m³ % mm wet	19.0	20m	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m³ % mm wet dry	19.0	20m	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5	19.0	
Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	t/m³ % mm wet dry t/m³	19.0	20m	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5 19.0	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	t/m³ % mm wet dry t/m³	19.0	20m	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m³ % mm wet dry t/m³ ent %	19.0	20m	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5 19.0	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	t/m³ % mm wet dry t/m³ ent %	19.0	19.0 - -	27/05 m Class 2 - N MOD 2.: 7.	/2021 //VQ, Donnyl IFIED 32 5 19.0	19.0	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Conte	t/m³ % mm wet dry t/m³ ent %	19.0	20m	27/05 m Class 2 - N MOD 2.: 7. 19.0	/2021 //VQ, Donnyl IFIED 32 5 19.0 - - - 2.5%	19.0 - - - - - 4.5%	

ASSTASSIGNED V1.13 MAR

* Retested in report 21498/R004

CIVIL GEOTECHNICAL SERVICES

Job No Report No 21498 21498/R004

6 - 8 Rose Avenue, Croydon, Vic 3136

Date Issued

16/08/2021

WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)

Tested by

AC

Project Location TRIJENA - STAGE 10 MICKLEHAM

Date tested 14/08/21

Checked by

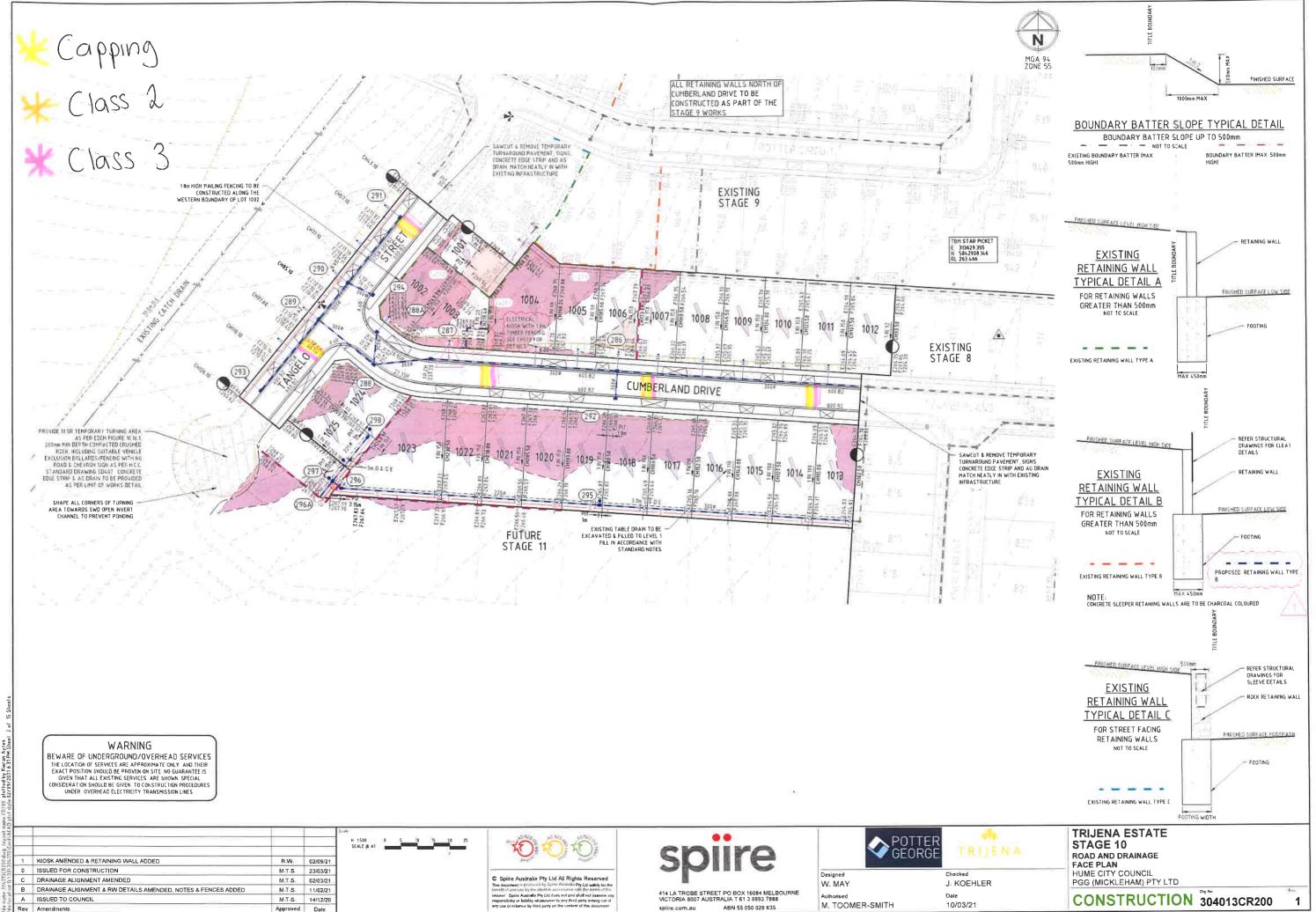
JHF

Feature

CLASS 2

Layer thickness

130 mm


Time:

07:35:21

Test No		16	17	18	19	20
ocation		Cu	ımberland Dı	rive	Tangel	o Street
C	hainage	120	170	220	50	100
	Offset	1.8	1.8	1.8	1.8	1.8
		south	north	south	west	east
		of kerb	of kerb	of kerb	of kerb	of kerb
pproximate depth from F.S.L.	m					
easurement depth	mm	100	100	100	100	100
ield wet density	t/m³	2.41	2.43	2.41	2.40	2.41
ield dry density	t/m³	2.27	2.28	2.28	2.28	2.29
ield moisture content	%	6.0	6.5	5.5	5.0	5.0
Date of assignment Material source and location Compactive effort			20mi	m Class 2 - M MOD	IFIED	brook
Maximum Dry Density	t/m³			2.3	32	
ptimum Moisture Content	%			7.	.5	
est procedure AS 1289.5.4.1						
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	=		49	29	
Percent of oversize material	dry			(#X)	0.00	- 2
djusted Maximum Dry Density	t/m³				70 9 2	
djusted Optimum Moisture Content	%	¥		50	3.7.0	- 12
Moisture Variation From	- 9	1.5%	1.5%	2.0%	2.50/	2.50/
	.				2.5%	2.5%
Optimum Moisture Conten		dry	dry	dry	dry	dry
	a. I	81.5	82.5	75.0	68.5	67.0
Moisture Ratio (R _m)	%	01.0	02.0			

A581ASSIGNED V1.13 MAR 1

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

